1 Given that *y* is a prime number,

(b) express $\frac{3}{2-\sqrt{y}}$ in the form $\frac{a+b\sqrt{y}}{-}$ where a, b and c are integers.

(2)

(Total for Question 1 is 2 marks)

2 (a) Show that $(6 + 2\sqrt{12})^2 = 12(7 + 4\sqrt{3})$

Show each stage of your working.

(3)

(Total for Question 2 is 3 marks)

3 The area of a rectangle is $18\,\mathrm{cm}^2$

The length of the rectangle is $(\sqrt{7} + 1)$ cm.

Without using a calculator and showing each stage of your working,

find the width of the rectangle. Give your answer in the form $a\sqrt{b}+c$ where a,b and c are integers.

(Total for Question 3 is 3 marks)

4 (b) Show that $\frac{2}{6 - 3\sqrt{2}}$ can be written in the form $\frac{+\sqrt{2}}{2}$ where a and b are integers. Show your working clearly.

(3)

(Total for Question 4 is 3 marks)

5 Given that $(8 - \sqrt{x})(5 + \sqrt{x}) = y\sqrt{x} + 21$ where x is a prime number and y is an integer,

find the value of *x* and the value of *y*. Show each stage of your working clearly.

x =

y =

(Total for Question 5 is 3 marks)

6 Express $\frac{3+\sqrt{8}}{\left(\sqrt{2}-1\right)^2}$ in the form $p+\sqrt{q}$ where p and q are integers.

Show each stage of your working clearly.

(Total for Question 6 is 4 marks)

7 Without using a calculator, show that Show your working clearly.

$$\frac{12}{\sqrt{2}-1} - \left(\sqrt{2}\right)^5 = 2\sqrt{32} + 12$$

8
$$a = \sqrt{8} + 4$$

$$b = \sqrt{8} - 4$$

(a-b)(a+b) can be written in the form $y\sqrt{4y}$

Find the value of *y*

Show your working clearly.

(Total for Question 8 is 3 marks)

9 The diagram shows the prism ABCDEFGHJK with horizontal base AEFG

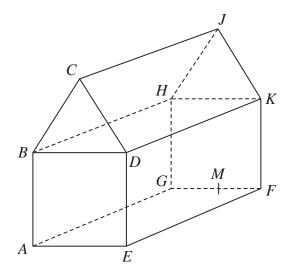


Diagram **NOT** accurately drawn

ABCDE is a cross section of the prism where ABDE is a square BCD is an equilateral triangle

 $EF = 2 \times AE$

M is the midpoint of GF so that JM is vertical.

Angle $MAJ = y^{\circ}$

Given that $\tan y^{\circ} = T$

find the value of T, giving your answer in the form are integers.

$$\frac{\sqrt{p} + \sqrt{q}}{17} \quad \text{where } p \text{ and } q$$

T =

10 Show that $\frac{\sqrt{12}}{\sqrt{3}+2}$

can be written in the form $a + \sqrt{b}$ where a and b are integers.

(Total for Question 10 is 3 marks)

11 Solve
$$\sqrt{3}(x-2\sqrt{3}) = x + 2\sqrt{3}$$

Give your answer in the form $a + b\sqrt{3}$ where a and b are integers. Show your working clearly.

x =

(Total for Question 11 is 4 marks)

- 12 Given that $8\sqrt{m} + \sqrt{49m} \sqrt{9m} = k\sqrt{m}$ where k is an integer and m is a prime number,
 - (a) work out the value of k

(b) Show that $\frac{5 - \sqrt{18}}{1 - \sqrt{2}}$ can be written in the form $a + b\sqrt{2}$

where a and b are integers. Show each stage of your working clearly. 13 Show that $\frac{2\sqrt{3}}{\sqrt{3}-1}$ can be written in the form $a+\sqrt{a}$ where a is an integer. Show your working clearly.

(Total for Question 13 is 3 marks)

14 The diagram shows a cuboid with a square cross section.

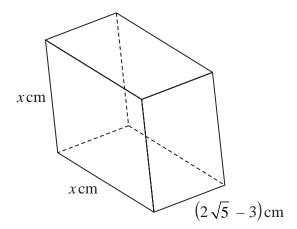


Diagram **NOT** accurately drawn

The volume of the cuboid is $(13 + 6\sqrt{5})$ cm³

Without using a calculator, find the value of x Give your answer in the form $a + \sqrt{b}$ where a and b are integers. Show your working clearly.